347 research outputs found

    Extremal Segments in Random Sequences

    Full text link
    We investigate the probability for the largest segment in with total displacement QQ in an NN-step random walk to have length LL. Using analytical, exact enumeration, and Monte Carlo methods, we reveal the complex structure of the probability distribution in the large NN limit. In particular, the size of the longest loop has a distribution with a square-root singularity at L/N=1\ell\equiv L/N=1, an essential singularity at =0\ell=0, and a discontinuous derivative at =1/2\ell=1/2.Comment: 3 pages, REVTEX 3.0, with multicol.sty, epsf.sty and EPS figures appended via uufiles. (Email in case of trouble.) CHANGES: Missing figure added to figures.uu MIT-CMT-KE-94-

    Facet Formation in the Negative Quenched Kardar-Parisi-Zhang Equation

    Full text link
    The quenched Kardar-Parisi-Zhang (QKPZ) equation with negative non-linear term shows a first order pinning-depinning (PD) transition as the driving force FF is varied. We study the substrate-tilt dependence of the dynamic transition properties in 1+1 dimensions. At the PD transition, the pinned surfaces form a facet with a characteristic slope scs_c as long as the substrate-tilt mm is less than scs_c. When m<scm<s_c, the transition is discontinuous and the critical value of the driving force Fc(m)F_c(m) is independent of mm, while the transition is continuous and Fc(m)F_c(m) increases with mm when m>scm>s_c. We explain these features from a pinning mechanism involving a localized pinning center and the self-organized facet formation.Comment: 4 pages, source TeX file and 7 PS figures are tarred and compressed via uufile

    Melting of Flux Lines in an Alternating Parallel Current

    Full text link
    We use a Langevin equation to examine the dynamics and fluctuations of a flux line (FL) in the presence of an {\it alternating longitudinal current} J(ω)J_{\parallel}(\omega). The magnus and dissipative forces are equated to those resulting from line tension, confinement in a harmonic cage by neighboring FLs, parallel current, and noise. The resulting mean-square FL fluctuations are calculated {\it exactly}, and a Lindemann criterion is then used to obtain a nonequilibrium `phase diagram' as a function of the magnitude and frequency of J(ω)J_{\parallel}(\omega). For zero frequency, the melting temperature of the mixed phase (a lattice, or the putative "Bose" or "Bragg Glass") vanishes at a limiting current. However, for any finite frequency, there is a non-zero melting temperature.Comment: 5 pages, 1 figur

    Domain Wall Depinning in Random Media by AC Fields

    Get PDF
    The viscous motion of an interface driven by an ac external field of frequency omega_0 in a random medium is considered here for the first time. The velocity exhibits a smeared depinning transition showing a double hysteresis which is absent in the adiabatic case omega_0 --> 0. Using scaling arguments and an approximate renormalization group calculation we explain the main characteristics of the hysteresis loop. In the low frequency limit these can be expressed in terms of the depinning threshold and the critical exponents of the adiabatic case.Comment: 4 pages, 3 figure

    Passive Sliders on Growing Surfaces and (anti-)Advection in Burger's Flows

    Full text link
    We study the fluctuations of particles sliding on a stochastically growing surface. This problem can be mapped to motion of passive scalars in a randomly stirred Burger's flow. Renormalization group studies, simulations, and scaling arguments in one dimension, suggest a rich set of phenomena: If particles slide with the avalanche of growth sites (advection with the fluid), they tend to cluster and follow the surface dynamics. However, for particles sliding against the avalanche (anti-advection), we find slower diffusion dynamics, and density fluctuations with no simple relation to the underlying fluid, possibly with continuously varying exponents.Comment: 4 pages revtex

    Shear bands in granular flow through a mixing length model

    Full text link
    We discuss the advantages and results of using a mixing-length, compressible model to account for shear banding behaviour in granular flow. We formulate a general approach based on two function of the solid fraction to be determined. Studying the vertical chute flow, we show that shear band thickness is always independent from flowrate in the quasistatic limit, for Coulomb wall boundary conditions. The effect of bin width is addressed using the functions developed by Pouliquen and coworkers, predicting a linear dependence of shear band thickness by channel width, while literature reports contrasting data. We also discuss the influence of wall roughness on shear bands. Through a Coulomb wall friction criterion we show that our model correctly predicts the effect of increasing wall roughness on the thickness of shear bands. Then a simple mixing-length approach to steady granular flows can be useful and representative of a number of original features of granular flow.Comment: submitted to EP

    Heating of magnetic fluid systems driven by circularly polarized magnetic field

    Get PDF
    Cataloged from PDF version of article.A theory is presented to calculate the heat dissipation of a magnetic suspension, a ferrofluid, driven by7 circularly polarized magnetic field. Theory is tested by in vitro experiments and it is shown that, regardless of the character of the relaxation process, linearly and circularly polarized magnetic field excitations, having the same root-mean-square magnitude, are equivalent in terms of heating efficiency. (C) 2010 Elsevier B.V. All rights reserved

    Theory of the vortex matter transformations in high Tc superconductor YBCO

    Full text link
    Flux line lattice in type II superconductors undergoes a transition into a "disordered" phase like vortex liquid or vortex glass, due to thermal fluctuations and random quenched disorder. We quantitatively describe the competition between the thermal fluctuations and the disorder using the Ginzburg -- Landau approach. The following T-H phase diagram of YBCO emerges. There are just two distinct thermodynamical phases, the homogeneous and the crystalline one, separated by a single first order transitions line. The line however makes a wiggle near the experimentally claimed critical point at 12T. The "critical point" is reinterpreted as a (noncritical) Kauzmann point in which the latent heat vanishes and the line is parallel to the T axis. The magnetization, the entropy and the specific heat discontinuities at melting compare well with experiments.Comment: 4 pages 3 figure

    Methyl 2,2-bis­(2,4-dinitro­phen­yl)ethano­ate

    Get PDF
    In the title compound, C15H10N4O10, the dihedral angle between the aromatic rings is 89.05 (16)°. One O atom of one of the nitro groups is disordered over two sites in a 0.70:0.30 ratio. In the crystal, the mol­ecules are linked by weak C—H⋯O inter­actions

    Self similar Barkhausen noise in magnetic domain wall motion

    Full text link
    A model for domain wall motion in ferromagnets is analyzed. Long-range magnetic dipolar interactions are shown to give rise to self-similar dynamics when the external magnetic field is increased adiabatically. The power spectrum of the resultant Barkhausen noise is of the form 1/ωα1/\omega^\alpha, where α1.5\alpha\approx 1.5 can be estimated from the critical exponents for interface depinning in random media.Comment: 7 pages, RevTex. To appear in Phys. Rev. Let
    corecore